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Network of characterizing functions for stationary populations
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A variety of open systems in nature and society exist under dynamic equilibrium, maintained by statistical
counterbalance between the entering and leaving of individuals and the stationarity of the exchange processes.
A network of functions characterizing the dynamics of such a stationary population is established and dis-
cussed, which allows the mutual transference of system properties without the need of any explicit information
about the microdynamic processes. In order to illustrate the potential benefit of these interdependence relations,
examples taken from diverse branches of research~adsorption and reaction kinetics, demographic analysis, and
coronary blood flow diagnosis! are given.@S1063-651X~99!11409-0#

PACS number~s!: 05.60.Cd, 02.50.Fz, 87.10.1e, 87.19.Hh
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I. INTRODUCTION

Let us consider a population of individuals within a co
fined system. Suppose that there are stationary proce
continuously exchanging individuals between this populat
and the system’s surrounding. Depending on the applicat
one may think of molecules temporarily adsorbed to so
surface, people entering and leaving a public building o
social group, the volume elements of the fluid flowin
through a biological tissue or a chemical device, advec
particles temporarily trapped in the vortices of a fluid,
various other situations. For many questions, one is in
ested in the statistics of the time spent among the popula
in the evolution of the ratio between different species
individuals, in the interplay between the exchange proces
and transitions from one species into another, etc.

II. THE NETWORK OF CHARACTERIZING FUNCTIONS

In order to describe the dynamics of the stationary
change of the individuals between the system and its
roundings, two basic probability density functions may
introduced, theresidence time distributionw(t) and the
transit time distributionx(t). Per definition,w(t)dt denotes
the probability that an arbitrary individual within the syste
has entered it a time betweent and t1dt ago, while
x(t)dt is the probability that an individual just leaving th
system has spent a time betweent andt1dt in its interior.
These functions may uniquely be transferred into each o
@1# by expression~1! in Fig. 1. As a conventional means fo
experimentally determining the exchange dynamics,
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may, starting from timet50, label the individuals entering
the system~in the case of molecules, e.g., by applying is
topes!. The tracer exchange curveg(t) is defined as the
relative amount of labeled individuals within the system
time t @in the medical literature,g(t) is referred to as the
accumulation curve#. Since all individuals with residence
times smaller than the observation timet surely have been
labeled, the tracer exchange curve follows from the reside
time distribution by simple integration@expression~3! in Fig.
1#. In a more general sense,g(t) gives the relative amount o
individuals which were, as a consequence of the syste
exchange dynamics, replaced during a time spant. Finally,
the individuals within the system may be assumed to be c
verted irreversibly from one species into another~for mol-
ecules, e.g., by a chemical reaction! without changing their
exchange statistics. If the probability of such a transiti
within a small time intervaldt is kdt ~as in a first-order
reaction!, then the probability that after a residence timet a
given individual still belongs to its initial species i
exp(2kt). Averaging over the residence time distributio
yields the mean relative amount of the initial species with
the system,h(k), as given by expression~4! in Fig. 1. ~In
heterogeneous catalysis, this is the famouseffectiveness fac
tor.! Mathematically, expression~4! in Fig. 1 is simply a
Laplace transform.

Although the four functions introduced so far descri
quite different features of a stationary population, they tu
out, thanks to their one-to-one relations summarized in F
1, to be equivalent in their information about the system. F
this reason we refer to them as ‘‘characterizing functions
Their importance is also due to the fact that they can be u
to predict the system’s response to external changes. If
relative amount of a certain species among the individu
entering the system is given by an arbitrary time functio
%E(t), then the time evolution of the relative amount%(t) of

c
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FIG. 1. The network of characterizing functions, interdependent by one-to-one relations~for definitions, see text!.
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this species among the populationwithin the system is found
to be

%~ t !5E
0

`

%E~ t2t!w~t!dt. ~1!

This is in fact a generalization of expression~3! in Fig. 1.
Analogously, for the relative amount of the considered s
cies among theleaving individuals, one has

%A~ t !5E
0

`

%E~ t2t!x~t!dt. ~2!

These equations can, in turn, be used to calculate im
tant mean quantities. This shall be illustrated with the me
transit timet transit, defined as

t transit5E
0

`

tx~t!dt. ~3!

Independently of the distributionx(t), this quantity relates
the ~constant! mean numberV of individuals within the sys-
tem ~if volume elements are considered, this is the total v
ume! and the~constant! mean flowI through the system via

t transit5V/I . ~4!

To determinet transit experimentally, one may ‘‘inject’’ a
small number of labeled individuals into the entering on
and measure the response functions%(t) and %A(t). From
Eqs.~1!–~3! it then follows that

t transit5

E
t

`

%A~t!dt

%~ t !
. ~5!

Here, t is an arbitrary observation time after the injection
complete. Since thust only refers to the measurement whi
t transit is, of course, time-independent, Eq.~5! offers the ad-
vantageous possibility to easily check for measuring err
by varying t.

A similar quantity is the mean residence time, origina
defined for adsorbate-adsorbent systems via the tracer
change curve as the mean intracrystalline lifetime@2#:
-

r-
n

l-

s

rs

x-

t intra5E
0

`

@12g~ t !#dt. ~6!

At closer view, this quantity has a much more general me
ing since it can be expressed as the first moment of the r
dence time distribution,

t intra5E
0

`

tw~t!dt, ~7!

or as the second moment of the transit time distributionx(t)
@1#. Thus,t intra not only describes a tracer exchange proc
but provides, liket transit, an intrinsic time scale of an ope
stationary system.

There is an interesting link with Feller’s famouswaiting
time paradox@3#. Transit times correspond to Feller’s inte
arrival times~the time intervals between subsequent eve
of a stochastic point process! while the residence time
corresponds—up to unimportant time reversal—to Felle
waiting time ~the time interval between a given proces
independent observation timet and the next arrival!. Indeed,
if one substitutes the interarrival time distribution of th
Poisson process considered by Feller into the transit t
distribution, x(t)5ae2at (a5t transit

21 ), then from expres-
sion ~1! in Fig. 1 and Eqs.~3! and~7! one easily obtains the
surprising result for the ‘‘mean waiting time’’t intra
5t transit. Feller had explained it by the fact that the obse
vation time is more probable to fall into alonger interval
between arrivals. Consistently, if all interarrival times a
identical, x(t)5d(t2t transit), the intuitive result t intra
5t transit/2 becomes correct.

III. EXAMPLES OF APPLICATION

Three special examples shall illustrate ways in which
general relations presented above~or similar ones, respec
tively! can be exploited to answer concrete questions of
search. At first, consider a finite array of particles which a
able to diffuse along one dimension without having the p
sibility to pass each other@5#. An example of such a ‘‘single-
file system’’ is zeolitic adsorbate-adsobent systems of a o
dimensional channel structure~e.g., tetraflouromethane in
zeolite AlPO4-5! @6#. Since there is still no satisfactory ana
lytical solution modeling the exchange dynamics, one ha
resort to the more empirical results of Monte Carlo compu
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simulations. Figure 2~a! shows a tracer exchange curve typ
cal for a single-file system@7#, compared with the analytica
curves for systems ruled by normal diffusion or by transp
resistances at the surface. The residence time distribut
and the effectiveness factors for the same cases are pres
in Figs. 2~b! and 2~c!, this time calculated by the networ
equations without the need of further time-expensive co
puter simulations. Similarly, a dramatic reduction of comp
tation expense was possible on calculatingt intra. Instead of
using its definition, Eq.~6!, which requires simulating a
complete curveg(t) and averaging over a large number
systems, one may calculatet intra via Eq. ~7! as a time aver-
age of residence times of just a single system@8#.

A special tracer exchange experiment is the tracer des
tion ZLC ~zero length column! technique@9#, measuring the
time derivativeof g(t) of an adsorbate-adsorbent syste
According to a hypothesis coined in Ref.@10#, one should be
able to discriminate between normal and single-file diffus
by whether the logarithmic long-time tail of this respon
curve is straight or bent~as suggested by the different tim
behavior of the mean square displacement of tagged
ticles!. Since, however, due to expression~3! in Fig. 1, the
time derivative ofg(t) is merely w(t), Fig. 2~b! clearly
disproves this hypothesis: Identically,all curves tend asymp
totically to single exponentials.

The second example demonstrates that the relevanc
the network reaches beyond typical physics. Figure 3~a!
shows the result of interviews with the customers of one
the largest shopping centers in Germany@11#, representing
their estimates of the duration of their stay in the center~i.e.,
their estimated ‘‘transit times’’!. For simplicity, we assume
that these estimates reflect the true situation with suffic
precision~and that the population is sufficiently stationary!.
Interestingly, although referring to transit times, this cur
does not givex(t) since it reflects the distribution among th
customerswithin the center. In contrast, the conversion
this modified transit time distributionv(t) into the function
x(t) @Fig. 3~b!# by expression~2! in Fig. 1 yields the fictive
result if the interviews would have taken placeat the exit

FIG. 2. Residence time distributions~b! and effectiveness fac
tors ~c! as calculated from simulated tracer exchange curves~a! for
three different adsorbate-adsorbent systems: normal diffusion~----!,
single-file diffusion~——!, and barrier-limited exchange (••••••).
@All times are given in units of the mean intracrystalline lifetim
t intra as expressed by Eq.~7!.#
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doors. The ‘‘tracer exchange curve’’@Fig. 3~d!# gives the
relative amount of customers which have newly entered
center within the timet. If the interest focuses on the strol
ing customers, even the ‘‘effectiveness factor’’@Fig. 3~e!#
allows an interpretation. As a crude approximation of t
rather complex behavior of customers, one might assu
that they buy, stimulated by some display, incidentally w
an ~unknown! ratek ~i.e., on average once in time 1/k). The
quantity h(k) would then give the~observable! relative
amount of customers with a still empty shopping cart.

Our final example concerns the blood flow in the corona
arteries, being of high diagnostic value. As a well validat
method, digital subtraction coronary angiography@12# ~in-
jecting a small bolus of a contrast medium into the infl
blood and measuring its concentration within the perfus
myocardium via x-ray extinction! determines the ratio o
maximal coronary flow~stimulated by vasodilatatory drugs!
to resting flow, known ascoronary flow reserve@13#. The
absoluteflow, however, can only be measured by metho
such as intracoronary Doppler-ultrasound catheters, wh
are expensive and involve additional risks. Further, the d
siometric method determines the vascular volume by only
approximative method, which is generally criticized@14#.
The network of characterizing functions inspired a new w
of data processing@15#, yielding both the absolute volum
flow I and the total volumeV just from the angiographic
extinction curves, which give%E , V%, and%A . It represents
an application of general equations like Eqs.~4! and~5! and
makes use of the fact thatt transit can be calculated in severa
different ways. This enabled a better exploitation of the
formation contained in the measured data.

FIG. 3. Transit time distribution~b!, residence time distribution
~c!, relative amount of new customers~d!, and relative amount of
strolling customers with empty trolleys in dependence on the
sumed ‘‘buying rate’’~e!, calculated from the modified transit tim
distribution ~a!, which was obtained from interviews with the cu
tomers of a shopping center~all times are given in minutes!. The
mean time the customers spend within the center is approxima
t transit5170 min as obtained fromx(t) via Eq. ~3!.
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IV. CONCLUSION

The presented equations with the involved functions
be applied quite universally in the analysis of the excha
dynamics of open stationary systems, to be encountered
merously in nature and society. Although individual ones
these relations are in daily use in several branches of sci
~see, e.g.,@4#!, so far the remarkable generality of the ne
work of interrelated characterizing functions is not, to o
knowledge, commonly appreciated. Being a comfortable t
if the internal dynamics allows a mathematical treatmen
even offers means of analysis if the underlying mechanis
are too difficult to be handled mathematically or if explic
models of the internal processes do not even exist. With
requiring any additional knowledge about the inhere
mechanisms, each of the characterizing functions may
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used to determine any other of them, as well as the sys
response to changes in the surrounding. Thus it turns out
a particular feature of the system may be inferred from
other, seemingly completely different one. In each of t
three presented examples of current research interest, the
work of interrelated characterizing functions was, in qu
different ways, most helpful to provide new insights.
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